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We examine the effects of correlated perturbations upon globally optimal paths through a random-
energy landscape. Motivated by Zhang’s early numerical investigations [Phys. Rev. Lett. 59, 2125
(1987)] into ground-state instabilities of disordered systems, as well as the work of Shapir [Phys. Rev.
Lett. 66, 1473 (1991)] on random perturbations of roughened manifolds, we have studied the specific case
of random bond interfaces unsettled by small random fields, confirming recent predictions for the insta-
bility exponents. Implications for disordered magnets and growing surfaces are discussed.

PACS number(s): 02.50.—r, 05.40.+j, 64.60.Ak

I. INTRODUCTION

Much of the present interest in kinetic roughening phe-
nomena [1] can be traced to the tremendous outpouring
of research on the dynamic scaling properties of Eden
clusters and ballistic deposits [2], following the introduc-
tion of a noisy Burgers equation by Kardar, Parisi, and
Zhang (KPZ) [3]. In the past five years, we have
discovered the extraordinary richness of this intriguing
equation; within the realm of KPZ can be found a
wonderfully varied collection of apparently unrelated
physical problems, which, beyond the stochastic growth
models mentioned above, include long-time tails of ran-
domly stirred fluids, the asymptotics of flame-front prop-
agation, as well as the roughening of vortex flux lines in
ceramic superconductors. This last system [4], which in
a different guise concerns the meandering of a directed
polymer in a random medium (DPRM) [5,6], is essential-
ly a small-scale version of the very difficult spin-glass
problem [7] that has plagued the statistical physics com-
munity for the last decade, replete with an ultrametric
free-energy landscape and potentially severe replica sym-
metry breaking [8], though blessed by a number of sim-
plifying features that make it one of the few tractable
problems of ill-condensed matter. Controlled by a
strong-disorder zero-temperature fixed point, the DPRM
is a classic global optimization problem in which one
seeks to minimize the total energy of a directed path
through a random environment. Performing averages of
many realizations of the random-energy landscape yields
highly nontrivial geometric and thermodynamic proper-
ties that characterize the ensemble of optimal paths. The
present paper, motivated initially by the work of Zhang
[9], and influenced by the later efforts of Shapir [10] and
Mezard [11], investigates the resistance of these optimal
paths to random disturbances of the disordered
landscape. Our results address specifically the role of
correlated drifts in the DPRM random-energy landscape
and confirm important predictions for random-field (RF)
perturbations of random-bond (RB) domain walls in
disordered two-dimensional magnets.

II. MODEL

Our starting point is Zhang’s formulation of the zero-
temperature DPRM, which is most amenable to extensive
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numerical simulation. One considers a directed walker,
who, starting at the origin of a square lattice, has the op-
tion of making an immediate step diagonally left or right
to (x,2)=(=x1,1). These and succeeding diagonal bonds
have random energies drawn uniformly between O and 1.
Neighboring bonds are uncorrelated. At the time slice ¢
there are ¢ + 1 possible end points to the 2° paths emanat-
ing from (0,0). As discussed earlier, the zero-temperature
DPRM is simply a matter of global optimization, which,
for a given realization of the random energy landscape
(i.e., collection of random bonds on the lattice), entails
finding the path of overall least energy, where the total
energy of a path is given by the sum of the random bonds
visited along the way. Many essential features of the
(1+1)-dimensional DPRM were established early on; in
particular, it is known that its geometric properties are
controlled by transverse fluctuations off the central axis
that scale as x,,,~t*~2/3, while sample-to-sample fluc-
tuations in the energy of the globally optimal trajectory
scale as e, ,~t°~!/3 there being an index relation,
w=2f—1, connecting the energy and wandering ex-
ponents.

As stressed by Zhang [9], the globally optimal path
through a given realization of the random-energy
landscape is, however, quite susceptible to small changes
in that random environment, there being many neighbor-
ing paths whose energies are very close to that of the
ground state, but whose configurations differ consider-
ably. These concerns have great physical import, of
course, since true physical systems often possess
quenched disorders that are actually dynamical variables,
albeit on rather long time scales and with very small am-
plitudes. In his own numerical investigation into these is-
sues, Zhang concentrated on the effects of an uncorrelat-
ed slow drift in the random energies of the bonds; that is,
he considered adding to each random-bond energy an un-
correlated perturbation drawn with uniform probability
between 0 and §, with 8 <<1. In the context of disor-
dered two-dimensional magnets, this corresponds to un-
correlated RB perturbations upon a RB interface. In the
DPRM global optimization problem, this procedure
yields two realizations of the random-energy landscape
that are different, though produced from similar distribu-
tions and possessing substantial overlap. Because of the
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work of Shapir [10], one knows that there exists a cross-
over length scale t*~8~!/?, where ggp=1 for random-
bond perturbations and @ge=1 for random-field pertur-
bations, beyond which the small differences between the
perturbed and unperturbed realizations of the random-
energy landscape manifest themselves in an asymptotic
fashion. There are, however, a number of interesting
scaling properties associated with ground-state instabili-
ties of this disordered system that reveal themselves im-
mediately. We focus our attention upon them first.

III. NUMERICAL DATA

Consider for example, the fact that the two globally
optimal paths in the two different but highly correlated
random environments are typically quite distinct. If
x1,x, denote the transverse positions of these two best
paths, then we find for RF’s perturbing RB interfaces
that the mean jump scales with path length as, see Fig. 1,
|x; —x,| ~t@= 1162002 entirely consistent with Shapir’s
prediction that
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Our own data for the case of RB’s perturbing RB’s,
which Zhang considered in his original work and are
presented here for the sake of comparison, are shown in
Fig. 2, corroborating the mean jump exponent
agp=@rptSirp=++%=2. In both instances, we have
used §=0.1 and performed disorder averages over 4000
realizations of the random-energy landscape. Further-
more, it is apparent that in the case of RF’s perturbing
RB’s, where the crossover length scale ¢tz ~82~ 100,
the data begin to pull away from the straight-line fit. By
contrast, for RB’s perturbing RB’s, the data follow the
line well beyond accessible system sizes since
t§s ~8 ®~10% steps in this case.

Note that this mean jump scaling index is quite large
because of the ultrametric structure of the ensemble of lo-
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FIG. 1. RF perturbations of the DPRM. From the left: Top
curve, mean jump distance; middle curve, jump probability, bot-
tom curve, energy advantage of new best path over old best
path.
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FIG. 2. Same as previous figure, but for RB perturbations of
the DPRM —the case considered by Zhang.

cally optimal paths. The very best path in a given reali-
zation of randomness is stable with respect to its immedi-
ate family thanks to the substantial ancestry they have in
common. Hence, there is an intrinsic resistance to
change, which Zhang alludes to as a Hopfield memory
effect. Nevertheless, because of the random perturba-
tions upon the original disordered landscape, a distant
relative of the original best path can accumulate enough
energy gains to become the globally optimal trajectory in
the perturbed landscape, incurring a large transverse
jump in the process. Since the triumphant neighbor is
rarely a local relative, these jumps make important con-
tributions to the statistical averages.

In addition to the mean jump size, we have also studied
the probability that a jump actually happens (x ;5x,) for
the case of RF perturbations of the random-energy
landscape. A glance at Fig. 1 reveals that for paths
shorter than the crossover length scale, the data are well
fit by a line of slope 1. For RB’s perturbing RB’s, the
data fall along a line of slope §, as explained by
Feigel’'man and Vinokur [12]. Again, for the RB case,
there is no indication, whatsoever, of incipient crossover
phenomena. Note that, while there are geometric argu-
ments [12-14] that predict these jump probability ex-
ponents, for both RF’s and RB’s, they coincide with the
crossover index g.

All this is easily understood on the basis of Shapir’s
scaling ansatz for the interfacial roughness |x(z)],

|xs(t)=|xo(2)|g(82%)=|xo(2)|{1+g'(0)8%+ - -- } ,

from which it follows that the displacement in the per-
turbed environment is given by

Ax(1)=|x5(0)] —|xo(8)] ~|x0(2)|g’'(0)8t P ~8:9T¢ ,
whence the mean jump exponent, while
P(jump)~Ax(t)/|xq(2)| ~8t9 .

For reasons that are unclear, the energy-based derivation
of Feigel’man and Vinokur [12] for the jump probability
exponent appears not to carry through for RF perturba-
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tions of the RB landscape. Nonetheless, the linear depen-
dence of both the mean jump distance and the jump prob-
ability on the strength of the perturbation were manifest
in the RF simulations we performed for other values of 8§
[15]. Zhang had pointed out similar behavior in the RB
case.

Given the quickly growing jump probability it is natu-
ral to wonder whether the old best path in the original
random-energy landscape retains some honor by remain-
ing a locally optimal path in the new disordered environ-
ment. In our numerical studies we found that the energy
change of the old best path in the different energy envi-
ronments had an exponent of unity for RF’s, which sug-
gests that the new locally optimal path does indeed over-
lap substantially with the old best path. Finally, we in-
vestigated the energy advantage, in the new environment,
that motivated the jump away from the old optimal path.
See Figs. 1 and 2. It scales with an exponent wgp=+% for
RF perturbations, wgg=2 for RB perturbations. The
latter index had been noted, of course, by Zhang. Never-
theless, our RF simulation provides additional support to
the conjecture that the instability exponents obey a scal-
ing relation, o' =2a—1, analogous to that of the unper-
turbed problem.

Finally, in Fig. 3, we illustrate the long-term implica-
tions of RF perturbations upon the RB landscape.
Whereas the data for geometric and free-energy fluctua-
tions in the original unperturbed random-energy
landscape scale nicely and are consistent with the ex-
ponents {rp=2 and wgrp=+, in the new environment RF
perturbations incur crossover to the stronger fluctuations
characteristic of correlated roughening, the exponents
Srp=wgrp=1 in agreement with those predicted by
Imry-Ma-—type arguments [16] for the two-dimensional
(2D) RF Ising model. Note that, while deviations mani-
fest themselves first for the sample-to-sample fluctuations
of the energy, the march to asymptotic scaling is well un-
derway for both quantities once the length scale
t{p ~ 100 is crossed.

It is clear from our numerical studies that correlated
random perturbations can incur severe ground-state in-
stabilities in uncorrelated disordered systems. In the case
of the DPRM, a RF perturbation upon the RB landscape
can have increasingly drastic consequences for the
configuration of globally optimal paths, causing large
jumps to distant relatives beyond the immediate family.
Ultimately, of course, the scaling is controlled entirely by
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Geometric and Thermodynamic Fluctuations
RFs perturbing RBs
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FIG. 3. Position (top pair) and energy (bottom pair) fluctua-
tions of the globally optimal path. Upper curves within each
pair correspond to the best path in the disordered environment
perturbed by random fields. For RF’s perturbing RB’s, both the
position and energy fluctuations eventually scale with unit
slope, in agreement with Imry-Ma predictions for the 2D RF Is-
ing model. Lower curves, associated with the original unper-
turbed energy landscape, exhibit standard 1+1 DPRM ex-
ponents, rp= %, wrp=1.

the RF fixed point, characterized by exponents quite
different from those of the RB problem. These effects are
presumably observable in 2D RB magnets that are sub-
ject to a very weak external magnetic field, giving rise to
small perturbing RF’s within the sample [17]. Thermally
activated jumps of domain walls to minimal energy
configurations might manifest themselves as large detect-
able noises in measurements of the magnetization, sus-
ceptibility, etc. For the kinetic roughening of stochasti-
cally grown surfaces, the importance of a spatially corre-
lated perturbation in the atomic beam would be dramatic,
leading to radically different surface morphologies with
substantially different scaling properties.

ACKNOWLEDGMENTS

We owe our gratitude to Y.-C. Zhang for writing the
intriguing Letter [9] that inspired this work. T.H.H. was
supported by grants from the Research Corporation, the
Petroleum Research Fund, and the NSF, under Grant.
No. DMR-9211240, while D.H. was a participant in the
Undergraduate Research Program of the Pew Charitable
Trust.

[1]17J. Krug and H. Spohn, Solids far from Equilibrium, edited
by G. Godreche (Cambridge University Press, Cambridge,
1991).

[2] Dynamics of Fractal Surfaces, edited by F. Family and T.
Vicsek (World Scientific, Singapore 1991).

[3] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[4] T. Nattermann and R. Lipowsky, Phys. Rev. Lett. 61,
2508 (1988).

[5] M. Kardar and Y.-C. Zhang, Phys. Rev. Lett. 58, 2087
(1987).

[6] M. Kardar, J. App. Phys. 61, 3601 (1987).

[7] M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass

Theory and Beyond (World Scientific, Singapore, 1987).
[8] M. Mezard and G. Parisi, J. Phys. (France) I 1, 809 (1991).
[9] Y.-C. Zhang. Phys. Rev. Lett. 59, 2125 (1987).
[10] Y. Shapir, Phys. Rev. Lett. 66, 1473 (1991).
[11] M. Mezard, J. Phys. (Paris) 51, 1831 (1990).
[12] M. V. FeigeI’man and V. M. Vinokur, Phys. Rev. Lett. 61,
1139 (1988).
[13] T. Nattermann, Phys. Rev. Lett. 60, 2701 (1988).
[14] Y.-C. Zhang, Phys. Rev. Lett. 60, 2702 (1988).
[15] T. Halpin-Healy and D. Herbert, (unpublished).
[16] See, e.g., T. Halpin-Healy, Phys. Rev. A 42, 711 (1990).
[17] S. Fishman and A. Aharony, J. Phys. C 12, L729 (1979).



